

Topic : Circle

2.

DPP No. 55

Total Marks : 22

Max. Time : 23 min.

Type of QuestionsM.M., Min.Comprehension (no negative marking) Q.1 to Q.3(3 marks, 3 min.)[9, 9]Single choice Objective (no negative marking) Q.4,5,6(3 marks, 3 min.)[9, 9]Subjective Questions (no negative marking) Q.7(4 marks, 5 min.)[4, 5]

COMPREHENSION (For Q.No. 1 to 3)

Let (p, q) and (r, s) be any two points on the circle $x^2 + y^2 = 1$.

1. The value of $(3p - 4p^3)^2 + (3q - 4q^3)^2$ is equal to

(A) 0	(B) 1	(C) $\frac{1}{2}$	(D) ⁷ / ₂
The range of p	s + qr is -		
(A) [0, 1]	(B) [–1, 0]	(C) [–1, 1]	(D) [−√2, √2]

3. If (p, q) is at a distance of θ from (1, 0) along circumfrence in anticlockwise direction and (r, s) is at a distance of 2θ from (p, q) along circumfrence in anticlockwise direction, then expression sp³ + rq³ is equal to

(A) $\frac{3}{4} \sin 4\theta$ (B) $\frac{3}{4} \sin 2\theta$ (C) $\sin 2\theta$ (D) $\sin 3\theta$

4. A circle S of radius 'a' is the director circle of another circle S_1 . S_1 is the director circle of circle S_2 and so on. If the sum of the radii of all these circles is 2, then the value of 'a' is –

(A)
$$2 + \sqrt{2}$$
 (B) $2 - \frac{1}{\sqrt{2}}$ (C) $2 - \sqrt{2}$ (D) $2 + \frac{1}{\sqrt{2}}$

5. Centre of a circle of radius $4\sqrt{5}$ lies on the line y = x and satisfies the inequality 3x + 6y > 10. If the line x + 2y = 3 is a tangent to the circle, then the equation of the circle is

(A) $\left(x + \frac{23}{3}\right)^2 + \left(y + \frac{23}{3}\right)^2 = 80$	(B) $\left(x + \frac{17}{3} \right)^2 + \left(y + \frac{17}{3} \right)^2 = 80$
(C) $\left(x - \frac{17}{3}\right)^2 + \left(y - \frac{17}{3}\right)^2 = 80$	(D) $\left(x - \frac{23}{3}\right)^2 + \left(y - \frac{23}{3}\right)^2 = 80$

- 6. If two chords of the circle $x^2 + y^2 ax by = 0$, drawn from the point P(a, b) is divided by the x-axis in the ratio 2:1 in the direction from the point P to the other end of the chord, then (A) $a^2 > 3b^2$ (B) $a^2 < 3b^2$ (C) $a^2 > 4b^2$ (D) $a^2 < 4b^2$
- 7. Find the equation of the circle having the lines $x^2 + 2xy + 3x + 6y = 0$ as its normals and having size just sufficient to contain the circle x (x 4) + y (y 3) = 0.

CLICK HERE

🕀 www.studentbro.in

Answers Key

- **1.** B
- **2.** C
- **3.** A
- **4.** C
- **5.** D
- **6.** A
- 7. $x^2 + y^2 + 6x 3y 45 = 0$

Get More Learning Materials Here : 💻

